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THE BORSUK-ULAM THEOREM 
AND BISECTION OF NECKLACES 

NOGA ALON AND DOUGLAS B. WEST 

ABSTRACT. The Borsuk-Ulam theorem of topology is applied to a problem 
in discrete mathematics. A bisection of a necklace with k colors of beads is 
a collection of intervals whose union captures half the beads of each color. 
Every necklace with k colors has a bisection formed by at most k cuts. Higher- 
dimensional generalizations are considered. 

1. Introduction. Suppose a necklace opened at the clasp has 2n beads, chosen 
from k colors and arranged in some order. Suppose there are 2ai beads of color 
i. A bisection of the necklace is a collection of nonoverlapping intervals of beads 
whose union captures half the beads of each color. The size of the bisection is the 
number of cuts that form the intervals of the bisection (the opening at the clasp is 
not counted). By passing gradually from a single large interval to its complement, 
it is easy to see that when there are two colors of beads, two cuts always suffice, 
regardless of how long the necklace is. It is natural to ask whether for every k there 
is a number of cuts that similarly suffices, independent of n. 

The problem of finding bisections of small size arises naturally when two math- 
ematically oriented thieves steal a necklace with 2ai jewels of type i and wish to 
divide it efficiently and fairly between them, wasting as little as possible of the 
metal in the links between the jewels. As remarked in [1], the solution of this 
problem also has some applications to VLSI circuit design. 

Note that if the beads of each of the k colors appear contiguously on the necklace, 
then the size of any bisection is at least k, since there must be a cut in each color. 
The main result of [4] is that every necklace with k colors of beads has a bisection 
of size at most k. The proof given in [4] involves induction on k for an analogous 
continuous problem, using detailed topological methods. Here we begin by giving 
a very short proof of this result using the Borsuk-Ulam theorem [2] (see also [3]). 
By rephrasing the problem in a way that allows the Borsuk-Ulam theorem to be 
applied, we avoid the necessity of detailed topological arguments. In addition, this 
method enables us to improve some of the results of [4] and to answer some of 
the questions raised there. In particular, we generalize the main result to higher 
dimensions. 

In ?2, we describe the continuous version of the problem and show that it gener- 
alizes the discrete one. In ?3 we apply the Borsuk-Ulam theoiem to solve the con- 
tinuous problem and note the relation between our result and a theorem of Hobby 
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and Rice [5] on L1 approximation. During the completion of this manuscript, we 
learned that our approach is, in fact, very similar to that of Pinkus [7], who gave 
a short proof of the Hobby-Rice theorem. In ?4 we discuss the problem of splitting 
the necklace into m > 2 parts, and the problem of splitting the necklace in other 
proportions. This last problem is related to a well-known theorem of Liapounoff 
[6] in measure theory. In ?5 we describe some generalizations to higher dimensions 
that reveal a somewhat surprising difference between odd and even dimensions. 

2. The continuous problem. Let I = [0,1] be the unit interval, and suppose 
that every point of I has a color i, 1 < i < k, such that for each i the set of points 
colored i is measurable. Let us call such a coloring of I an interval coloring. For 
convenience of expression, an interval coloring with k colors is a k-coloring. Given 
an interval coloring, a bisection of size r is a sequence of numbers 0 = yo < Yi < 
*K. < Yr < Yr+i = 1 such that U{[yi_,yi] : i 0_ mod2} captures precisely half 
the measure of each color. As in the discrete problem, size at least k is required for 
any bisection of a k-coloring in which each color appears contiguously and colors 
occupy disjoint intervals. In the next section we apply the Borsuk-Ulam theorem 
to prove 

PROPOSITION 2. 1. Every interval k-coloring has a bisection of size at most k. 

The statement of this continuous problem differs infinitesimally from that in [4]. 
Nevertheless, by the same argument as in [4], this proposition yields the bound of 
k for the size of bisections of k-color discrete necklaces. Simply turn an opened 
necklace of n beads into an interval coloring by partitioning [0,1] into 2n equal 
segments and coloring the jth segment by the color of the jth bead of the necklace. 
Proposition 2.1 guarantees a bisection using at most k cuts, but the cuts need not 
occur at the endpoints of the 2n segments. If there is a "bad cut " in the interior of 
a segment belonging to the ith color, then there must be another such bad cut. We 
can slide one of the cuts to increase the measure captured for color i and the other 
cut to decrease it by the same amount until one of the cuts reaches the boundary 
of its small segment. Therefore, induction on the number of bad cuts guarantees 
that we can correct the bad cuts to obtain a bisection that translates back into a 
bisection for the discrete problem. 

As noted in [4], this also allows us to satisfy the jewel thieves when some colors 
appear an odd number of times. For whatever partition of the "extra" bead of each 
type that they decide is equitable, the appropriate rounding up or down of each ai 
can be achieved in the splitting up within the same bound of k cuts. 

3. Proof of Proposition 2.1. We need the following well-known result: 

LEMMA 3.1 (BORSUK-ULAM [2]-SEE ALSO [3]). Let f: Sk -* Rk be a 
continuous function from the k-dimensional sphere Sk (in Rk+1) to Rk. Suppose 
that f(x) = -f(-x) for all X E Sk. Then there exists X E Sk such that f(x) = 0. 
U 

Given an interval k-coloring of [0, 1], define a function f: Sk -* Rk as follows. 
Let x = (x1, ...,Xk+1) be a point of Sk. Define (z) = z(x) = (zo....,Zk+1) by 
zo = 0, zj = Ej71 x? for j > 1. For 1 < j < k, define fj (x) = >ki+t1 sign(xi)mj (i), 
where m3(i) is the measure of the jth color in the segment [zi-1, zi]. Finally, put 
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f (X) = 
(fi (X), ... .I fk()). Clearly, f: Sk - Rk is a continuous function satisfying 

f(x) =-f(-Y) for all x E Sk. (It is amusing to note that in fact f is constant on 
the positive orthant, yielding the full measure of each color.) By Lemma 3.1, there 
exists x E S k such that f(x) = 0. Put Z = U{[zi - zi]:sign (i) = +1}. Since 
f (X) = 0, Z captures half the measure of each color. Since endpoints of the intervals 
in Z occur only at the zi, this bisection has at most k cuts, which completes the 
proof of Proposition 2.1. 0 

REMARK 3.2. This proof holds even if we replace the density functions of the 
colors by arbitrary continuously-integrable functions. We thus get the following 
result, which improves Theorem 6 of [4] and was proved by Hobby and Rice in [5] 

(see also [7]). 

PROPOSITION 3.3 [5]. Let 91, g,9k: [0,1] -* R be k continuously-integrable 
functions. Then there exist 0 = zo < z1 < ?.. < Zk < Zk+1 = 1 and 61,..., I5k+1 E 

{+1} such that gj S fZi g3 = 0 for all 1 < j < k. 

4. Splitting in other proportions. Given an interval k-coloring, k cuts 
suffice to form two disjoint sets each containing exactly half of each color. A 
natural question, raised in [4], is to consider m thieves rather than two. In other 
words, determine for m > 2 the minimum number of cuts c(m, k) that always suffice 
to form m disjoint sets each capturing 1/m of each color. If every color appears 
contiguously, we must have at least m- 1 cuts in each color, so c(m, k) > (m - 1)k. 
Repeated application of Proposition 2.1 shows that when m is a power of 2 this 
bound is best possible. 

THEOREM 4. 1. c(2i, k) = (2i-1)k. 

PROOF. It suffices to show c(2i, k) < (2i - 1)k, which we do by induction on 
j. For j = 1 this is Proposition 2.1. For j > 1, we apply the induction hypothesis 
for j - 1 and 1. Begin by using (2i-1 - 1)k cuts to form 2i-1 sets of intervals 
each containing 1/2i-1 of each color. For each of those sets, consider the interval 
coloring formed by placing those intervals next to each other and rescaling to total 
length 1. Using at most k cuts, this interval coloring can be bisected. Translating 
back to the original interval coloring, this adds altogether at most k2i-1 more cuts, 
so that the desired distribution is attained with at most (2i - 1)k cuts. 0 

This suggests the following 

CONJECTURE 4.2. For every m and k, c(m, k) = (m - 1)k. 

This conjecture is plausible because, besides holding for all k when m is a power 
of 2, it also holds for all m when k = 2. In fact, for k = 2 the following stronger 
result holds, yielding Conjecture 4.2 for k = 2 by applying it succesively with 
a = 1/m, 1/(m - 1),..., 2 and breaking off the amount due each thief one by one. 

PROPOSITION 4.3. For every interval coloring with two colors and every 0 < 
a < 1, one can form with at most two cuts a set of intervals that captures the 
fraction a from each of the two colors. 

PROOF. View the points of the interval as real numbers modulo 1 (i.e., think 
of it as a cycle formed by identifying the endpoints). For 0 < x < 1, let g(x) be 
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the measure of color 1 in the interval [x, x + a (mod 1)]. If t is the total measure 
of color 1 in the interval, then the average value of g(x) is foJ g(x) dx = at. Since g 
is continuous, g(x) = at for some x. Therefore, cutting at x and at x + a (mod 1) 
yields a set of measure a containing the fraction a of the measure of color 1; hence 
it also contains a of the measure of color 2. 0 

By analogy with c(m, k), let c(a, k) be the minimum number of cuts that suffices, 
in any interval k-coloring, to obtain a collection of intervals capturing a of the 
measure of each color. We do not know whether c(a, k) is well defined, i.e. finite, 
for every k > 3 and 0 < a < 1. In particular, we do not know this for k = 3 and 
a = 3. By Theorem 4.1, c(a, k) exists whenever a = i/2i, and Conjecture 4.2 would 
imply that it does at least when a is rational. When A is not restricted to be the 
union of finitely many intervals, it is true that there always exists some measurable 
subset A of the unit interval that captures a of the measure of each color. Indeed, 
this remains true when the colors are replaced by arbitrary continuous measures. 
This follows immediately from the following well-known result of Liapounoff [6]. 

LEMMA 4.4. Let 1, .. ., Pk be k continuous probability measures on [0, 1] . For 
a measurable set X C [0,1], let pi (X) be the measure of pi in X, and put f(X) = 
(Pi(X) ... , XPK(X)) E Rk. Then {f(X): X C [0,1], X measurable} is a closed 
convex subset of Rk. O 

In particular, since (0,... ,0) = f(0) and (1,..., 1) = f([O, 1]), there is some 
measurable X whose image is (a,.. ., a). 

5. Higher dimensions. Now we return to the case of 2 thieves, but consider 
higher-dimensional versions of the necklace. Let C = Cd be the d-dimensional unit 
cube, and suppose the points of C are colored using k colors, such that the set of 
points with color i is measurable for each i. Call this a k-coloring of the cube. Our 
results thus far easily imply that, given any direction, there are always at most k 
hyperplanes perpendicular to that direction that form two disjoint sets of slices of 
C each containing half of each color. For example, for the direction of the x1-axis, 
this follows immediately by applying Proposition 3.3 (the Hobby-Rice theorem) to 
the functions {gj: 1 < j < k}, where gj(y) is the (d - 1)-dimensional measure of 
the jth color in C n {x: xl = y}. Thus it is more interesting to consider bisections 
where we cut all the axes in the same way and 2-color the regions so formed like a d- 
dimensional checkerboard. In particular, given a sequence of numbers (z) such that 
O = ZO < Zi < ... < Zr < Zr+l = 1 let Ii = [zi-1, zi] and Cil0..,id = ill X ... X id' 
Then a bisection having size r for a colored d-dimensional cube C is a sequence (z) 
such that the set U{Cil,...,id: il + * + id 0 (mod 2)} captures precisely half the 
measure of each color. 

Note that for d = 1 this reduces to our previous definition of bisection. For d = 2, 
a bisection corresponds to a black-white checkerboard with the same number of rows 
and columns, such that all the rectangles along the diagonal are squares and the 
white rectangles together contain half the measure of each color. 

Somewhat surprisingly, it turns out that for odd dimensions there is always a 
bisection whose size does not exceed the number of colors, but for even dimensions, 
there is no finite size that always suffices to yield a bisection, even with only two 
colors. The remainder of the paper is devoted to proving these two results. 
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THEOREM 5. 1. If d is odd, then every k-coloring of Cd has a bisection of size 
at most k, and this bound is best possible. 

PROOF. First we show that the bound, if true, is best possible. Consider any 
coloring of Cd in which each of the first k - 1 colors fills a small cube such that no 
hyperplane parallel to an axis cuts two of these cubes and all of them are close to the 
origin. The kth color fills the rest of the cube. For example, for some small E > 0, 
and 1 < i < k, let the ith color fill the cube [(i - 1)E, iE] x x [(i - 1)e, iE]. Any 
bisection must contain some zj in the range ((i - 1)E, iE), or else the ith color is not 
bisected. Also, if E is sufficiently small, any bisection must contain some zj bigger 
than kE, since otherwise a portion of the kth color with measure (i - (k - 1)E)d > 2 

has no cuts in it. Thus any bisection has size at least k. 
The proof that any coloring has a bisection of size at most k is similar to our 

proof of Proposition 2.1. Given d odd and a k-coloring of Cd, define a function 
f: Sk -* Rk as follows. Let x = (x1,. Xk+l) be a point of Sk. As in ?3, define 
z=z() = (zo , Zk+l) by zo=O, z3= >=1 x? for j > 1. With Cil0...tid defined 
from z as above, put 

fj (x) = Z **Esign(xil) ... sign(xid)mj(Cil ....id), 
il id 

where mj(Ci1,...,id) is the measure of the jth color in Cil0.tid. Finally, let f(x) = 
(fl (x),... , fk ()). Clearly, f: Sk -* Rk is a continuous function, and f(x) = 
-f(-x) for all x E Sk since d is odd. By Lemma 3.1 (the Borsuk-Ulam theorem), 
there exists x E Sk such that f(x) = 0. As in ?3, this implies that (z) is a 
bisection. 0 

Finally, we show that there is no analogue of Theorem 5.1 when the number of 
dimensions is even. 

THEOREM 5.2. For every even d > 2 and every positive integer 1, there is a 
2-coloring of Cd that has no bisection of size at most 1. 

PROOF. The main idea of the construction is that in any bisection the main 
diagonal ({x:x1 = ... = Xd}) lies in U{Ci1,...,id:i1 = ... = id}, and since d is 
even these all satisfy E ij0- (mod 2) and are captured by the same thief. If the 
coloring is designed so that a color is concentrated near the main diagonal, these 
cubes will contain more than half its total measure. 

For simplicity, we provide the details of the argument only for d = 2; the general 
case is analogous. Given a positive integer 1, choose E > 0 sufficiently small such 
that 

2e - (31 + 1)E2 > 1 (2E_- E2). 

Color 02 red and blue by letting {(x, y) E C2: x - E < y < x + 4 be red and all 
other points be blue. 

Suppose (z) is a bisection of size m. Let 6i = - zi-1 for 1 < i < m + 1, 
and let Ci,j be the regions generated by (z). If 6i > e, then Ci,i contains precisely 
2Ebi- E2 red area. Hence the total red area in U Ci,i is at least Z{i:6i(>}(26i - E2). 

However, Em 1 6i = 1, and thus Z{i 6>.} 6i > 1 - me. This implies that the red 
area in U Ci,i exceeds 2E(1 - me) - (m + 1)E2 = 2e - (3m + 1)E2. The total red 
area is 2e - E2. By the definition of E, if m < 1, then U Ci,i contains more than half 
of this. Hence there is no bisection of size at most 1. 0 
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NOTE ADDED IN PROOF. The first author has recently proved Conjecture 4.2. 
This will appear in [8]. 
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